Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 1960, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737660

RESUMO

Certain cultivars of maize show increased tolerance to water deficit conditions by maintenance of root growth. To better understand the molecular mechanisms related to this adaptation, nodal root growth zone samples were collected from the reference inbred line B73 and inbred line FR697, which exhibits a relatively greater ability to maintain root elongation under water deficits. Plants were grown under various water stress levels in both field and controlled environment settings. FR697-specific RNA-Seq datasets were generated and used for a de novo transcriptome assembly to characterize any genotype-specific genetic features. The assembly was aided by an Iso-Seq library of transcripts generated from various FR697 plant tissue samples. The Necklace pipeline was used to combine a Trinity de novo assembly along with a reference guided assembly and the Viridiplantae proteome to generate an annotated consensus "SuperTranscriptome" assembly of 47,915 transcripts with a N50 of 3152 bp in length. The results were compared by Blastn to maize reference genes, a Benchmarking Universal Single-Copy Orthologs (BUSCO) genome completeness report and compared with three maize reference genomes. The resultant 'SuperTranscriptome' was demonstrated to be of high-quality and will serve as an important reference for analysis of the maize nodal root transcriptomic response to environmental perturbations.


Assuntos
Transcriptoma , Zea mays , Zea mays/genética , Anotação de Sequência Molecular , Perfilação da Expressão Gênica/métodos , Genoma , Plantas
2.
Plasmid ; 84-85: 27-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26876941

RESUMO

Gene deletion and protein expression are cornerstone procedures for studying metabolism in any organism, including methane-producing archaea (methanogens). Methanogens produce coenzymes and cofactors not found in most bacteria, therefore it is sometimes necessary to express and purify methanogen proteins from the natural host. Protein expression in the native organism is also useful when studying post-translational modifications and their effect on gene expression or enzyme activity. We have created several new suicide plasmids to complement existing genetic tools for use in the methanogen, Methanosarcina acetivorans. The new plasmids are derived from the commercially available Escherichia coli plasmid, pNEB193, and cannot replicate autonomously in methanogens. The designed plasmids facilitate markerless gene deletion, gene transcription, protein expression, and purification of proteins with cleavable affinity tags from the methanogen, M. acetivorans.


Assuntos
Clonagem Molecular/métodos , Deleção de Genes , Genes Transgênicos Suicidas/genética , Methanosarcina/genética , Methanosarcina/metabolismo , Plasmídeos/genética , Expressão Gênica , Metano/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...